Category Archives: Risk

On the role of replicating portfolios in the pricing of financial derivatives in general

Replicating portfolios play a central role in terms of pricing financial derivatives. Here is what we have learned so far about replicating portfolios in Finance 4366:

  1. Buying forward is equivalent to buying the underlying on margin, and selling forward is equivalent to shorting the underlying and lending money. Like options, forwards and futures are priced by pricing the replicating portfolio and invoking the “no-arbitrage” condition. If the forward/futures price it too low, then one can earn positive returns with zero risk and zero net investment by buying forward, shorting the underlying and lending money. Similarly, if the forward futures price is too high, one can earn positive returns with zero risk and zero net investment by selling forward and buying the underlying with borrowed money. This is commonly referred to as “riskless arbitrage”; it’s riskless because you’re perfectly hedged, and it’s arbitrage because you are buying low and selling high.
  2. The replicating portfolio for a call option is a margined investment in the underlying. For example, in my teaching note entitled “A Simple Model of a Financial Market”, I provide a numerical example where the interest rate is zero, there are two states of the world, a bond which pays off $1 in both states is worth $1 today, and a stock that pays off $2 in one state and $.50 in the other state is also worth one dollar. In that example, the replicating portfolio for a European call option with an exercise price of $1 consists of 2/3 of 1 share of stock (costing $0.66) and a margin balance consisting of a short position in 1/3 of a bond (which is worth -$0.33). Thus, the value of the call option is $0.66 – $0.33 = $0.33.
  3. Since the replicating portfolio for a call option is a margined investment in the underlying, it should come as no surprise that the replicating portfolio for a put option consists of a short position in the underlying combined with lending. Thus, in order to price the put, you need to determine and price the components of the replicating portfolio; we will begin class tomorrow by determining the the relative weightings (delta and beta) for the put’s replicating portfolio.
  4. If you know the value of a call, the underlying, and the present value of the exercise price, then you can use the put-call parity equation to figure out the price for the put option; i.e., {C_0} + PV(K) = {P_0} + {S_0} \Rightarrow {P_0} = {C_0} + PV(K) - {S_0}. Since we know the price of the call ($0.33), the present value of the exercise price ($1), and the stock price ($1), then it follows from the put-call parity equation that the value of the put is also 33 cents. More generally, if you know the values of three of the four securities that are included in the put-call parity equation, then you can infer the “no-arbitrage” value of the fourth security.

VXX, the exchange-traded version of the CBOE Volatility Index (AKA “VIX”)

The first exchange-traded product that allowed investors to bet directly on future stock swings will expire this month. Here is a look at how the transition will work and how the end for VXX came to be.

The Index Fund featured as one of “50 Things That Made the Modern Economy”

Tim Harford also features the index fund in his “Fifty Things That Made the Modern Economy” radio and podcast series. This 9 minute long podcast lays out the history of the development of the index fund in particular and the evolution of so-called of passive portfolio strategies in general. Much of the content of this podcast is sourced from Vanguard founder Jack Bogle’s September 2011 WSJ article entitled “How the Index Fund Was Born” (available at https://www.wsj.com/articles/SB10001424053111904583204576544681577401622). Here’s the description of this podcast:

“Warren Buffett is the world’s most successful investor. In a letter he wrote to his wife, advising her how to invest after he dies, he offers some clear advice: put almost everything into “a very low-cost S&P 500 index fund”. Index funds passively track the market as a whole by buying a little of everything, rather than trying to beat the market with clever stock picks – the kind of clever stock picks that Warren Buffett himself has been making for more than half a century. Index funds now seem completely natural. But as recently as 1976 they didn’t exist. And, as Tim Harford explains, they have become very important indeed – and not only to Mrs Buffett.”

Warren Buffett is one of the world’s great investors. His advice? Invest in an index fund

Insurance featured as one of “50 Things That Made the Modern Economy”

From November 2016 through October 2017, Financial Times writer Tim Harford presented an economic history documentary radio and podcast series called 50 Things That Made the Modern Economy. This same information is available in book under the title “Fifty Inventions That Shaped the Modern Economy“. While I recommend listening to the entire series of podcasts (as well as reading the book), I would like to call your attention to Mr. Harford’s episode on the topic of insurance, which I link below. This 9-minute long podcast lays out the history of the development of the various institutions which exist today for the sharing and trading of risk, including markets for financial derivatives as well as for insurance.

“Legally and culturally, there’s a clear distinction between gambling and insurance. Economically, the difference is not so easy to see. Both the gambler and the insurer agree that money will change hands depending on what transpires in some unknowable future. Today the biggest insurance market of all – financial derivatives – blurs the line between insuring and gambling more than ever. Tim Harford tells the story of insurance; an idea as old as gambling but one which is fundamental to the way the modern economy works.”

On the relationship between the S&P 500 and the CBOE Volatility Index (VIX)

Besides going over the course syllabus during the first day of class on Tuesday, January 15, we will also discuss a particularly important “real world” example of financial risk. Specifically, we will look at the relationship between stock market returns (as indicated by daily percentage changes in the SP500 stock market index) and stock market volatility (as indicated by daily percentage changes in the CBOE Volatility Index (VIX)):

As indicated by this graph from page 21 of the lecture note for the first day of class, daily percentage changes on closing prices for VIX and the SP500 are strongly negatively correlated. In the graph above, the y-axis variable is the daily return on the SP500, whereas the x-axis variable is the daily return on the VIX. The blue points represent 7,311 daily observations on these two variables, spanning the time period from January 2, 1990 through January 7, 2019. When we fit a regression line through this scatter diagram, we obtain the following equation:

{R_{SP500}} = 0.0588 - 0.1139{R_{VIX}},

where {R_{SP500}} corresponds to the daily return on the SP500 index and {R_{VIX}} corresponds to the daily return on the VIX index. The slope of this line (-0.1139) indicates that on average, daily VIX returns during this time period were inversely related to the daily return on the SP500; i.e., when volatility as measured by VIX went down (up), then the stock market return as indicated by SP500 typically went up (down). Nearly half of the variation in the stock market return during this time period (specifically, 48.73%) can be statistically “explained” by changes in volatility, and the correlation between {R_{SP500}} and {R_{VIX}} comes out to -0.696. While a correlation of -0.698 does not imply that {R_{SP500}} and {R_{VIX}} will always move in opposite directions, it does indicate that this will be the case more often than not. Indeed, closing daily returns on {R_{SP500}} and {R_{VIX}} during this period moved inversely 78.4% of the time.

You can see how the relationship between the SP500 and VIX evolves prospectively by entering http://finance.yahoo.com/quotes/^GSPC,^VIX into your web browser’s address field.On the relationship between the S&P 500 and the CBOE Volatility Index (VIX)